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The problem of processing data resulting from ion-molecule beam scattering experiments under 
single-collision conditions is treated from the point of view of the probability theory. The proba­
bility-interpreted quantities characterizing ion-molecule scattering are related to the total and 
differential cross-section of the process in question. 

Since the beginning of ion-molecule beam scattering studies under single-collision 
conditions results have been presented in the form of contour scattering diagrams. 
I n the first years of the studies, Wolfgang and Cross 1 suggested the use of "Cartesian 
probabilities" to express the angular and radial distributions of product velocities 
in the velocity space of the system. The Newton diagram2 provided a framework 
for the graphical transformation of the laboratory (LAB) and center-of-mass (CM) 
coordinate system. This type of data presentation has been generally accepted, 
with small variations, by most of authors in this field of research3 - 8. Specific changes 
have been described only briefly and fragmentarily as sections of papers focussed 
on chemical aspects of the studies. Consequently, the terminology, definitions, and 
meaning of employed quantities has not been unified satisfactorily. 

In this paper we attempt to treat the subject as a whole describing how to obtain 
from experimental data the basic quantities characterizing a reactive scattering 
process, including a detailed derivation of their mutual relations. Our treatment 
systematically uses terms from probability theory and relates the probability-inter­
preted quantities to the total and differential cross section of the scattering process 
in question. Although the treatment is generally valid for all chemical particles (atoms, 
molecules, ions), we restrict ourselves deliberately to ion-molecule processes, where 
this kind of analysis has been widely applied. 

Classical Treatment of an Elementary Chemical Reaction A + B -+ C + D 
as a Two-Body Collision 

The main task of the chemical scattering theory is to deduce the asymptotic behaviour 
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of products from the asymptotic behaviour of reactants. By the asymptotic behaviour 
we mean the behaviour of the chemical particles far enough from the collision 
center so that no interaction between them may take place. If the molecule A interacts 
with the molecule B randomly as far as their mutual orientation is concerned (this 
is the case in most of beam scattering experiments) it does not make any sense 
to complicate the description of the process by treating A and B as manybody 
(i.e. polyatomic) species. (It would be necessary in any case to average the result 
of such a description over all relative orientations of A and B). 

Because of this reason we may replace the chemical particles by mass points 
in order to obtain a classical description of the state of the system in external (trans­
lational) degrees of freedom. This approach makes it possible to accept from clas­
sical two-body collision theory9 some general conclusions which must be valid 
for the dynamics of elementary chemical processes as well. The analysis of this 
approach will then be used as a basis for the interpretation of the quantities measured 
in a beam experiment under single-collision conditions. 

In the asymptotic regions the movement of the particles is uniform (in absence of 
external forces acting on the system the asymptotic regions are defined by the constant­
velocity-vector, i.e. uniform motion). We can take advantage ofthis fact by describing 
a dynamical state of the system in external degrees of freedom before and after the 
interaction by means of time-independent velocities of the particles. It is convenient 
to represent these velocities by points in the velocity space) 0 of the system, a Euclidean 
vector space E 3 • 

The internal force acting in the system is a central force. The angular momentum 
is then a constant of motion and the process is confined to a plane, i.e. the points 
representing velocities of the reactants A, B and the products C, D lie in the same 
plane of the velocity space of the system. Consequently, in order to represent the 
dynamical state of a two-body system it is sufficient to work only with a two-dimen­
sional subspace E2 of the velocity space of the system. However, we have to keep 
in mind that the finite size of real beams makes actually the problem of chemical 
scattering a three-dimensional problem (see further on). For the sake of simplicity 
the problem will be treated here in two dimensions, for an extension of the dimension 
by one is in this case trivial. 

Let us assume that v A' VB are the velocity vectors of the reactants in E2 , represented 
by the mass points A, B of the masses rnA' rnB and of the total mass M = rnA + rnB. 
Let us construct in E2 an orthogonal coordinate system {O; V)' v2 } of the origin 0 
and the unit base vectors v), v2 • Let the origin 0 be located at the intersection 
of the vectors VA' VB (i.e. in the collision center). Changing now the location of the 
vectors V A' VB by a parallel translation to the distance equal to the norm of each, 
the vectors V A' VB will represent radius vectors of the velocities which the particles 
A, B would have if no interaction during the collision occurred (Fig. la). When 
speaking about reactant velocities, we will always have in mind these velocities. 
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(Such a convention will allow us to depict the product velocities as their radius 
vectors in the same coordinate system). This coordinate system {O; VI' V 2 } will be 
called the laboratory (LAB) system9 • The radius vectors VA. VB can be expressed 
in the LAB system by the expansions 

2 

2 

VB = L VBiVi, 
i= I 

(1) 

(2) 

where VAi> VBi are Cartesian coordinates of the radius vectors in the LAB system. 
The relative velocity vector vr of the reactants A, B, defined by the relation 

(3) 

has the norm in the LAB system: 

IIvr ll == Vr = (V;l + V;2)1/2 , (4) 

b 

FIG. 1 

Laboratory (LAB) and center-of-mass (CM) 
coordinate systems {a; vI' V 2 } and {a'; 
u1 • u2 }. respectively. in the velocity space 
of the system A + B -+ C + D. a) radius 
vectors of the reactant velocities and their 
Cartesian coordinates; b) radius vectors of the 
product velocities and their Cartesian co­
ordinates. The angle of rotation JI of the 
LAB and CM coordinate systems and the 
radius vector V of the velocity of the center 
of mass in the laboratory system are shown 
as well 
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where 

Vri = V Ai - VBi' i = 1, 2 . (5) 

Let us now construct in E2 another orthogonal coordinate system {O'; u1, U2} 

of the origin 0' and the unit base vectors U h U2' The expansion of the vector V = 00' 
in the LAB system has the form: 

2 

V = L ViVi • (6) 
i=l 

Let us define the coordinates VI and the angle of rotation "1 of the new coordinate 
system with respect to the LAB system by the following relations: 

(7) 

(8) 

the origin 0' of the coordinate system {O'; u1, U2} will then coincide with the point 
representing the LAB velocity of the center of mass of the reactants A, B; further on, 
the unit base vector U 1 will be parallel with the reactant relative velocity vector Vr • 

The new coordinate system defined by relations (7) and (8) will be called the center-of­
-mass (CM) system9 • The expansion of the radius vectors UA , UB of the velocities 
of A, B in the CM system acquires a simple form: 

(9) 

(10) 

where UA1 , UBi are Cartesian coordinates of the radius vectors of the reactant velo­
cities in the CM system. The coordinates UA2' UB2 are identically equal to zero. 
Thus we may skip indexing of the coordinates, i.e. we define UAl == U A , UBI == UB' 

The reactant relative velocity vector Ur in the CM system defined by the relation 

(11) 
has the norm 

II II - - ( 2 2 )1/2 -Ur = U r - Uri + Ur 2 - UA - UB , (12) 
where 

Uri = UAi - UBi' i = 1,2. (13) 

The transformation of the Cartesian coordinates of velocities corresponding to the 
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transformation of the coordinate systems is (since VA 2, VBl = 0, see Fig. 2) 

(14) 

(15) 

Using definitions (7) and (8) these transformations imply: 

(16) 

(17) 

The basic feature of the transformation of LAB and CM coordinate systems is the 
conservation of the norm of the reactant relative velocity vector: 

(18) 

The relative translational energy of the reactants T(collision energy) is then identical 
with the kinetic energy of the reactants in the CM system: 

T= (1!2)l1v~ = (1!2)l1u~; (19) 

It is the reduced mass of the reactans: 11 = (mAmB)!M. 
Another advantage of introducing the CM system consists In the form of the 

momentum conservation law: 

(20) 

this relation follows immediately from (16) and (17). 

We will turn now our attention to the products C, D (Fig. Ib). 

FIG. 2 

Newton diagram of the process A + B ...... 
...... C + D. Radius vectors of product C 
velocity in the LAB and CM systems and the 
appropriate LAB and CM scattering angles 
are shown 
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Let their velocities be given in the LAB system by the radius vectors vc, vo: 

2 

Vc = L VCiVi 
i~ I 

2 

Vo = .L VDiV i , 
i ~ I 

575 

(21) 

(22) 

where VCi' VOi are the appropriate Cartesian coordinates in the LAB system. The radius 
vector of the LAB velocity of the center of mass Viis defined by the relation: 

(23) 

The momentum conservation in the LAB system can be written as 

Vi = V/, i = 1, 2 . (24) 

This means, of course, that the product velocities can be expressed as the radius 
vectors uc, Uo in the CM system. The appropriate expansion assumes the form: 

2 

Uc = L UCiUi 
i ~ I 

2 

Uo = L UDiU i 
i~ 1 

(25) 

(26) 

where UCi, U Oi are the Cartesian coordinates of the product velocities in the CM 
system. The coordinate transformation corresponding to the transformation of the 
LAB to the CM system has the following form 1o : 

(27) 

(28) 

(29) 

(30) 

Similarly as for the reactants, we can prove for the products the conservation 
of the norm of the relative velocity vectors v; = Vc - Vo and u; = Uc - Uo : 

IIV;II == v; = u; == Ilu;1I ; (31) 
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the momentum conservation in the CM system is 

(32) 

and to derive an expression for the product relative translational energy T' (identical 
with the expression for the product kinetic energy in the CM system): 

T' = (1/2) Ilv;2 = (1/2) J.l'U;2 ; (33) 

J.l' is the reduced mass of the products: J.l' = (mcmo)/M. 
It is a consequence of momentum conservation that a complete information 

on the product final translational state in the A + B ~ C + D process can be 
obtained knowing only one of the product velocities. 

In our two-dimensional orthogonal coordinate systems {O; VI' V 2 } and {O'; u 1, u2} 

we can now introduce polar coordinates11 of velocities of the j-th particle (j = A, B, 
C, D) using the Cartesian coordinates of velocities of those particles; the velocity 
ofthej-th particle has in the LAB system the coordinates Vj' e j : 

a [ (2 2 )-1/2] • ~j = arccos Vjl V j1 + VJ2 , 

the polar coordinates in the CM system are Uj' 8 j : 

{ 2 2 )1/2 
Uj = Uj1 + uj2 

n [ (2 2 )-1/2] "'j = arccos UJI U j1 + Uj2 • 

(34) 

(35) 

(36) 

(37) 

The polar coordinate transformation corresponding to the transformation of the 
LAB and CM systems is determined unequivocally by the relations (27)-(30) 
and (34)-(37). We will not write down those explicitly. Let us just note that the 
momentum conservation in the CM system has in the polar coordinates the form: 

(38) 

(39) 

the norm of the relative velocity vector is given by the sum: 

(40) 
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v; = Ue + Uo. (41) 

Using the last relation we can express the product relative translational energy T' as: 

T' = (1/2) (meMlmo) u~ . (42) 

In the arrangement of our experiment the reactant beams intersect at a fixed 
angle of 90°. This makes it possible (without any further restrictions) to orient the 
laboratory system in such a way that the base vectors v1, v2 will be parallel with the 
radius vectors v A, VB (Fig. 2). This allows for a simple definition of the product 
scattering angle. Let us define the scattering angle of the product C in the LAB 
system as the angle between the radius vector Ve of the product C and the radius vector 
v A of the reactant A. The LAB scattering angle defined in this manner is then identi­
cal with the polar angle €le of the product velocity in the LAB system (c/. equation 
(35)). Therefore, we can call directly the polar angle, €le, the laboratory scattering 
angle (LAB angle) of the product C. Similarly, we can define the scattering angle 
of the product C in the CM system as the angle between the radius vectors U A and ue. 
Because the radius vector UA is ex definitione parallel with the base vector Vu this 
scattering angle is identical with the polar angle 8e of the product velocity in the CM 
system (cj. equation (37). We will call the polar angle, 8e, directly the CM scattering 
angle ( CM angle) of the product C. Let us note that the product CM angle is identical 
with the angle between the relative velocity vectors of reactants and products. The 
graphical representation of the velocities in the LAB and CM systems in the velocity 
space such as in Fig. 2 is referred to as the Newton diagram2 • 

The Total Cross-Section 

Pairs of reactants A + B enter the collision with various values of the impact para­
meter vector b (ref. 13). The continuous set of values of Ilbll == b ranges from zero 
to a maximal value, bmax , where the process under study still takes place. Each pair, 
of velocity vectors of mutually randomly oriented reactants in crossed beams defines 
their relative velocity vector Vr and for b =1= 0 a plane containing Vr and b. In this 
way the beam scattering problem develops into a three-dimensional problem; there­
fore, our treatment must be transferred into the E3 velocity space. Let us assume 
that the values of the reactant relative velocity vectors (defined by various velocity 
pairs of reactants in beams) differ not very much from the most probable value 
(as far as their size, direction, and position is concerned). Then, in the first approxima­
tion, the vector of so defined most probable reactant relative velocity can be regarded 
as a mutual cross line of all considered planes determined by the particular reactant 
pairs. 

Radius vectors of velocities of products are located in the planes of radius vectors 
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of velocities of those particular reactants they were formed from. Thus the product 
velocities in the velocity space are distributed isotropically about the most probable 
relative velocity vector of the reactants (accordingly to the isotropical distribution 
of b). In other words: if the above mentioned assumptions are fulfilled, the distribu­
tion of product velocities about the most probable reactant relative velocity vector 
must be cylindrically symmetrical. 

Let us assume that the dimensions of the detection slit are infinitesimal so that 
we may apply the differential treatment. The distance R of the geometrical center 
of the detection slit from the collision center (approximated here as a point) is 
an instrumental constant. Its position in the LAB coordinate system can be then 
defined by the angle e and by the azimuthal angle <P (angle with respect to the plane 
of the two beams). As the particles travel in the field free region between the colli­
sion center and the detection slit with a constant velocity, the position of the detec­
tion slit can be expressed by the angular coordinates of the detected particles in the 
LAB system, and vice versa. 

The number of ions of the species k (k = A, C) reaching the detector is propor­
tional to the number of k-ions passing through the detection slit area dG, and sur­
mounting a stopping potential* e. As the mass-to-charge ratio of the detected ions 
is known, the stopping potential e can be expressed directly in units of kinetic energy. 
The detector slit area is an instrumental constant for all positions of its geometrical 
center on a spherical surface of a radius R and with its origin in the collision center. 
The measured electric current (or the pulse-counted number of particles) is then 
directly proportional to the intensity of particles of the species k, i.e. to the number 
of particles k passing during a unit time through the unit area perpendicular to it. 
As the distance R of the geometrical center of the detection slit is an instrumental 
constant, the area dG of the slit can be expressed angularly as an element dQ = 
= sin e de d<P of the solid angle Q in the LAB coordinate system of the velocity 
space. 

Let us consider a continuous function I.Je, Q) of continuous variables e, Q. Here e 
represents the applied potential barrier in kinetic energy units, defined on the interval 
e E ( 0; Em.x); Q is a solid angle, defined on the interval Q E ( 0; 4n) and cutting from 
the spherical surface Gtot = 4nR2 an area of variable size. The intensity lACe, Q) 
of the ion reactant A differs from zero only over an area in the infinitesimal vicinity 
of the values e = 0 and <P = 0 (i.e. the ion reactant enters the scattering center 
as a beam and the values e = 0 and <P = 0 are adjusted to its direction). Therefore 
we can neglect in our consideration the dependence of IA on Q and take only IA = 
= lACe). 

* We treat here the ion energy analysis by means of a stopping potential, i.e. integral energy 
analyzer, as it is more general; the case of a differential (e.g., a deflection or a TOF energy analyzer) 
is included in the treatment and its specific features will be pointed out further on in the text. 
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Assuming a single reaction channel of the process A + B (leading to the products 
C + D), we can write14 

lACe = 0) - l~(e = 0) = le(e = 0, Q = 41t), (43) 

where lACe = 0) is the full initial (unattenuated) intensity of the reactant A (zero 
stopping potential barrier); l~(e = 0) is the full final (attenuated by the particular 
single-channel scattering process) intensity of A; and le(e = 0, Q = 41t) is the full 
intensity of the product C (no barrier, entire spherical surface). It holds for l~(e = 0): 

(44) 

where s is the length of the ion A path through the coIlision center (in the direction 
of movement of A), and nB is the number density of particles of the reactant B; 
the proportionality constant O'tot is the total cross-section of the process under study. 
Combining (43) and (44) one gets 

(45) 

The expression in the brackets can be, for small values of the exponent, approximated 
by the first term of the expansion, and then 

(46) 

The function le(e, Q), from now on designated as lee, Q), represents for fixed values 
of e, Q a number of ions C which appear in a solid angle Qe < Q and whose kinetic 
energy Ee is greater than the barrier e, i.e. Ee < (Emax - e) == E. (The function 
I(E, Q) can be obtained from lee, Q) for a fixed value of Q by the reflection with res­
pect to the line e = Em.ax/2). The function I(E, Q) fulfils all the requirements of a func­
tion proportional to a distribution function F(E, Q) of continuous random variables 
E,6. 

Differentiating the function I(E, Q) with respect to E, Q we obtain a function 
iCE, Q), proportional to the probability density feE, Q) that Ee < E, Qe < Q: 

(Pl(E, Q) = iCE, Q) ; 
aE aQ 

(47) 

the expression iCE, Q) dE dQ is then proportional to the probability that the product 
LAB kinetic energy falls into the interval (E; E + dE) and that the product appears 
in the LAB solid angle interval (Q; Q + dQ). 
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Let us consider a function J(E, .0): 

J(E, .0) = al(E, .0) . 
a.Q ' 

(48) 

the expression J(E, .0) d.Q is then proportional (for a fixed value of E) to the proba­
bility that the product appears in the interval of the LAB solid angle (.0; .0 + d.Q), 
i.e . .0 < .Qe < .0 + d.Q. This solid angle interval intercepts on the surface of the 
sphere of diameter R and its center in the point 0 an annular surface. The area 
of this surface is proportional to f sin e de d<P; a h -1 mUltiple of the annulus area 
is then proportional to the areadGofthe detection slit (h E (0; 2ft». Thus the function 
J(E, .0) is obviously directly proportional to the measured quantity at a fixed value 
of E. It holds, of course, that 

Designating 

8J(E, .0) = i(E, .0) . 
8E 

ffi(E, .0) dE d.Q = I tot = le(e:= 0,.0 = 4ft), 

we have: 

it follows from (51) 

j(E .0) - '(E .0) r 1 - 8J(E, .0) r 1 
, - I, 101 - 8E tol • 

(49) 

(50) 

(51) 

(52) 

This means that by normalization and differentiation of the measured function 
• J(E, .0) with respect to E we obtain the probability density that the detected product 
has kinetic energy Ee < E and falls into a solid angle .Qe < .0. 

In conclusion let us note the following: if a differential, instead of an integral, 
energy analyzer is used, the differentiation with respect to E results from the per­
formance of the analyzer; the measured quantity is in such a case proportional 
directly to i(E, .0). 
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Transformation of Independent Variables: 
Probability Density Distribution of Cartesian and Spherical Coordinates 
of Velocities in the LAB and CM System 

581 

In order to express the probability density distribution of the coordinates of product 
velocities in the coordinate systems in the velocity space, we need first of all to trans­
form the variables of the probability density distribution feE, .0). 

It holds for the transformation of the LAB kinetic energy E to the LAB velocity v 
(we will skip indexing of particles remembering that the quantities always refer 
to the product C): 

feE, .0) dE d.o = f(v, .0) dv d.o (53) 

which is a consequence of the conservation of the number of particles (or conserva­
tion of probability) in the velocity space; equation (53) implies: 

feE, .0) mv = f(v, .0) . (54) 

F or the transformation of the variables v,.o to the complete set of spherical 
variables v, 8, I[> of the product velocity, we can write another relation reflecting 
the probability conservation: 

f(v,.o) dv d.o = f(v, 8, 1[» dv d8 dl[> ; (55) 

it follows from (55): 

f(v,.o) sin 8 = f(v, 8,1[». (56) 

The meaning of f(v, 8, 1[» dv d8 dl[> is the probability that the product LAB velocity 
spherical coordinates Ve, 8 e, I[>e fit within the following interval: v < Ve < v + 
+ dv, 8 < 8 e < 8 + d8, I[> < I[>e < I[> + dl[>. 

The remaining transformations are given by the usual Jacobiansll ; Therefore, 
we will just show the results: 

(57) 

where VI' V2' V3 is a complete set of Cartesian coordinates of the product velocity 
in the LAB system; the meaning of f(vI> V2, V3) dVI dV2 dV3 is the probability that 
VI < Vel < VI + dv I , V2 < Ve2 < V2 + dV2' V3 < Ce3 < C3 + dV3· 

The transformation of LAB Cartesian coordinates VI' V2' V3 to CM Cartesian 
coordinates "1' U2' u3 of the product gives 

(58) 
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and the transformation of the CM Cartesian coordinates Ul' U2' U3 to the CM 
spherical coordinates u, 9, <p gives 

(59) 

The meaning of f(ul' U2' U3) dU I dU 2 dU3 is the probability that Ul < UCI < Ul + 
+ du 1 , U2 < UC2 < U2 + du 2 , U3 < UC3 < U3 + dU3; analogously, the meaning 
of f( u, 9, <p) du d9 d<p is the probability that U < Uc < u + du, 9 < 9c < 9 + 
+ d9, <p < <Pc < <p + d<p. 

By combining (57)-(59) and substituting for f(v, e, 4» from (54) and (56) we ob­
tain a very important relation: 

feE, Q) rn V-I = f(v 1 , v2, v3) = f(u 1, u2, u3) = 

= (u 2 sin 9r l feu, 8, <p). (60) 

Thus by dividing the probability density feE, Q) by the appropriate value of the 
norm v = (2E/rn/ 12 we get a quantity proportional to the probability density 
f(ul, U2' u3)· 

The probability density distribution f( u 1, U2' U3) must reflect the cylindrical 
symmetry of the scattering pattern with respect to the reactant relative velocity vector. 
This makes it possible to represent the distribution of product velocities by a cut 
through the velocity space of the system containing the reactant relative velocity 
vector. Such a cut is done for instance by the plane of the beams. The plot of the 
probability density distribution f(u l , U2, U3) in this plane using the contour method 
is referred to as the scattering diagram 13 - 15. 

Let us note that the probability density f(ul' u2, u3) has been called in literature 
also Cartesian probability 1 , Carterian intensity, flux density, and specific intensity3. 

Probability Density Distribution of CM Scattering Angle 
and of Product Relative Translational Energy 

The probability demity f( 9) of CM product scattering angle 9 is given by the integral 

f(8) = IIf(u, 8, <p) du d<p. (61) 

Because of the invariance of f( u, 9, <p) with respect to <p (following from the cylindri­
cal symmetry of the product velocity distribution) we can write: 

f(9) = 2n If(u, 8, <p) du ; (62) 
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substituting from (59) we have: 

feB) = 21t sin B fU 2 f(u l, U2 , u3 ) du . (63) 

The probability density PCB) defined by the relation 

(64) 

is proportional to the differential cross-section U diff( B); this follows from the definition 

In order to prove this statement we recall that 

i(B) = feB) I tot , 

where 

because 

Then it follows: 

PCB) = (21t sin Btl feB) = (21t sin Btl [i(B)/Itot] = 

= (21t sin Bt I dItot = (21t sin Br 1 (~/Itot) (dutot/dB) 
I tot dB 

which means that 

(65) 

Hence, the proportionality constant between PCB) and Udiff(B) is the total cross­
-section. 

In order to obtain the probability density peT') of the product relative translational 
energy T', we have to derive first the expression for the probability density p( u) 

of the product eM velocity U (i.e. the norm of uc) 

p(U) = Iff(U, B, q» dB dq> = 21t If(U, B, q» dB. (66) 
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Substituting from (59) we have: 

P(u) = 21tu2 ff(u 1, U2' U3) sin B dB. (67) 

Now we can get the probability density peT') by the transformation of variables, 
following from the relation: 

P(u) du = peT') dT' . (68) 

The substitution from (42) gives: 

peT') umcMmol = p(u); (69) 

The combination of this relation with (67) leads to the final result 

(70) 

The probability density distribution PCB) vs B is often called in literature the eM 
angular distribution and the probability density distribution peT') vs T' is called 
the product relative translational energy distribution4 • 

Our paper attempts to use consistently the fact that an elementary chemical process 
occurring in a coHision of two particles is investigated in scattering experiments 
on an ensemble of a large number of reactant pairs. This provides a basis for normali­
zation of the measured product intensities and for their interpretation from the point 
of view of the probability theory. Such a treatment makes it possible to speak about 
a probability that a (single) product particle exhibits certain properties. 
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