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The problem of processing data resulting from ion-molecule beam scattering experiments under
single-collision conditions is treated from the point of view of the probability theory. The proba-
bility-interpreted quantities characterizing ion-molecule scattering are related to the total and
differential cross-section of the process in question.

Since the beginning of ion-molecule beam scattering studies under single-collision
conditions results have been presented in the form of contour scattering diagrams.
In the first years of the studies, Wolfgang and Cross! suggested the use of “Cartesian
probabilities” to express the angular and radial distributions of product velocities
in the velocity space of the system. The Newton diagram? provided a framework
for the graphical transformation of the laboratory (LAB) and center-of-mass (CM)
coordinate system. This type of data presentation has been generally accepted,
with small variations, by most of authors in this field of research®~8, Specific changes
have been described only briefly and fragmentarily as sections of papers focussed
on chemical aspects of the studies. Consequently, the terminology, definitions, and
meaning of employed quantities has not been unified satisfactorily.

In this paper we attempt to treat the subject as a whole describing how to obtain
from experimental data the basic quantities characterizing a reactive scattering
process, including a detailed derivation of their mutual relations. Our treatment
systematically uses terms from probability theory and relates the probability-inter-
preted quantities to the total and differential cross section of the scattering process
in question. Although the treatment is generally valid for all chemical particles (atoms,
molecules, ions), we restrict ourselves deliberately to ion-molecule processes, where
this kind of analysis has been widely applied.

Classical Treatment of an Elementary Chemical Reaction A + B> C + D
as a Two-Body Collision

The main task of the chemical scattering theory is to deduce the asymptotic behaviour
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of products from the asymptotic behaviour of reactants. By the asymptotic behaviour
we mean the behaviour of the chemical particles far enough from the collision
center so that no interaction between them may take place. If the molecule A interacts
with the molecule B randomly as far as their mutual orientation is concerned (this
is the case in most of beam scattering experiments) it does not make any sense
to complicate the description of the process by treating A and B as manybody
(i-e. polyatomic) species. (It would be necessary in any case to average the result
of such a description over all relative orientations of A and B).

Because of this reason we may replace the chemical particles by mass points
in order to obtain a classical description of the state of the system in external (trans-
lational) degrees of freedom. This approach makes it possible to accept from clas-
sical two-body collision theory® some general conclusions which must be valid
for the dynamics of elementary chemical processes as well. The analysis of this
approach will then be used as a basis for the interpretation of the quantities measured
in a beam experiment under single-collision conditions.

In the asymptotic regions the movement of the particles is uniform (in absence of
external forces acting on the system the asymptotic regions are defined by the constant-
velocity-vector, i.e. uniform motion). We can take advantage of this fact by describing
a dynamical state of the system in external degrees of freedom before and after the
interaction by means of time-independent velocities of the particles. It is convenient
to represent these velocities by points in the velocity space!® of the system, a Euclidean
vector space Ej.

The internal force acting in the system is a central force. The angular momentum
is then a constant of motion and the process is confined to a plane, i.e. the points
representing velocities of the reactants A, B and the products C, D lie in the same
plane of the velocity space of the system. Consequently, in order to represent the
dynamical state of a two-body system it is sufficient to work only with a two-dimen-
sional subspace E, of the velocity space of the system. However, we have to keep
in mind that the finite size of real beams makes actually the problem of chemical
scattering a three-dimensional problem (see further on). For the sake of simplicity
the problem will be treated here in two dimensions, for an extension of the dimension
by one is in this case trivial.

Let us assume that v,, vy are the velocity vectors of the reactants in E,, represented
by the mass points A, B of the masses m,, mg and of the total mass M = m, + mg.
Let us construct in E, an orthogonal coordinate system {O; vy, v,} of the origin O
and the unit base vectors v;, v,. Let the origin O be located at the intersection
of the vectors v,, vy (i.e. in the collision center). Changing now the location of the
vectors v,, vy by a parallel translation to the distance equal to the norm of each,
the vectors v,, vz will represent radius vectors of the velocities which the particles
A, B would have if no interaction during the collision occurred (Fig. 1a). When
speaking about reactant velocities, we will always have in mind these velocities.
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(Such a convention will allow us to depict the product velocities as their radius
vectors in the same coordinate system). This coordinate system {O; v,, v,} will be
called the laboratory (LAB) system®. The radius vectors v,, vy can be expressed

in the LAB system by the expansions
2

Vi = UaV; (1)

i=1

2

Vg =) UV, #))

i=1

where v,,, vg; are Cartesian coordinates of the radius vectors in the LAB system.
The relative velocity vector v, of the reactants A, B, defined by the relation

V.=V, — Vg 3
has the norm in the LAB system:

[vel| = 0. = (0 + %)%, “)

FiG. 1

Laboratory (LAB) and center-of-mass (CM)
coordinate systems {O; v{, v,} and {0’
u ,u,}, respectively, in the velocity space
of the system A + B — C + D. a) radius
vectors of the reactant velocities and their
Cartesian coordinates; b) radius vectors of the
product velocities and their Cartesian co-
ordinates. The angle of rotation y of the
LAB and CM coordinate systems and the
radius vector V of the velocity of the center
of mass in the laboratory system are shown
as well

Collection Czechoslovak Chem. Commun. [Vol. 49] [1984]



Processing of Ion-Molecule Beam Scattering Data 573

where

Uy = Up; — Ug;, i=1,2. (5)

Let us now construct in E, another orthogonal coordinate system {0’; u,, u,}
of the origin O’ and the unit base vectors u,, u,. The expansion of the vector V = 00’
in the LAB system has the form:

2

V=3 Vv,. (6)

i=1

Let us define the coordinates V; and the angle of rotation y of the new coordinate
system with respect to the LAB system by the following relations:

I/i = (mAvAi + vaBi) M_l (7)

y = arccos [(va; — vgy) v '] ; (8)

the origin O’ of the coordinate system {O’; uy, u,} will then coincide with the point
representing the LAB velocity of the center of mass of the reactants A, B; further on,
the unit base vector u, will be parallel with the reactant relative velocity vector v,.
The new coordinate system defined by relations (7) and (8) will be called the center-of-
-mass (CM) system®. The expansion of the radius vectors u,, uy of the velocities
of A, B in the CM system acquires a simple form:

Uy = Up Uy (9)
UB = uBlul (10)
where u,,, ug, are Cartesian coordinates of the radius vectors of the reactant velo-
cities in the CM system. The coordinates u,,, ug, are identically equal to zero.

Thus we may skip indexing of the coordinates, i.e. we define u,, = u,, ug, = up.
The reactant relative velocity vector u, in the CM system defined by the relation

u = u, — uy (11)
has the norm
lul = u, = (uly + u2)"? = up — ug, (12)
where
u,i=uAi-—-uBi, i = 1,2 (13)

The transformation of the Cartesian coordinates of velocities corresponding to the
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transformation of the coordinate systems is (since v,,, vg; = 0, see Fig. 2)
uy, = (vpay — Vy)cosy + V,siny (14)
ug = — Vycosy + (Vo — vgy)siny. (15)
Using definitions (7) and (8) these transformations imply:
u, = (mg/M) v, (16)
ug = —(ma/M)o, . (17)

The basic feature of the transformation of LAB and CM coordinate systems is the
conservation of the norm of the reactant relative velocity vector:

U, = up — ug = (my[M) v, + (My[/M) v, = v,. (18)

The relative translational energy of the reactants T (collision energy) is then identical
with the kinetic energy of the reactants in the CM system:

T = (1/2) o} = (1/2) pu ; (19)

u is the reduced mass of the reactans: p = (mymg)[M.
Another advantage of introducing the CM system consists in the form of the
momentum conservation law:

—‘mAuA = mBuB ; (20)

this relation follows immediately from (16) and (17).
We will turn now our attention to the products C, D (Fig. 1b).

FiG. 2
Newton diagram of the process A + B —
— C + D. Radius vectors of product C
velocity in the LAB and CM systems and the
appropriate LAB and CM scattering angles
are shown
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Let their velocities be given in the LAB system by the radius vectors v, vp:
2
vC =.Z vCiVi (21)

VD - z UDivi > (22)

i=1

where v, Up; are the appropriate Cartesian coordinates in the LAB system. The radius
vector of the LAB velocity of the center of mass V' is defined by the relation:

I/i, = (vaCi + mDvDi) M—l Iy l = 1, 2 . (23)
The momentum conservation in the LAB system can be written as
Vi=V/, i=12. (29)

This means, of course, that the product velocities can be expressed as the radius
vectors Uc, Up in the CM system. The appropriate expansion assumes the form:

2

uc =Y ugu; (25)

i=1

2

UD = Z uDiui (26)

i=1

where uc;, up; are the Cartesian coordinates of the product velocities in the CM
system. The coordinate transformation corresponding to the transformation of the
LAB to the CM system has the following form!°:

ucy = (v — Vy)cosy — (vep — V,)siny (27)
uc, = —(ve; — Vi)siny + (vep — Va) cosy (28)
up; = (vpy — Vi) cosy,— (vpy — V) siny (29)
up, = —(vp; — Vy)siny + (vp, — V,)cosy. (30)

Similarly as for the reactants, we can prove for the products the conservation
of the norm of the relative velocity vectors v, = v¢ — vp and U, = uc — up:

Ivil = or = w; = Jui]l 5 (31)
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the momentum conservation in the CM system is
—mMmclic; = mplip;, i=1,2 (32

and to derive an expression for the product relative translational energy T” (identical
with the expression for the product kinetic energy in the CM system):

T = (12) wv? = (1)2) wu;?; (33)

u' is the reduced mass of the products: u' = (mcmp)/M.

It is a consequence of momentum conservation that a complete information
on the product final translational state in the A + B —» C + D process can be
obtained knowing only one of the product velocities.

In our two-dimensional orthogonal coordinate systems { O; vy, v,} and { O'; uy, u,}
we can now introduce polar coordinates'! of velocities of the j-th particle (j = A, B,
C, D) using the Cartesian coordinates of velocities of those particles; the velocity
of the j-th particle has in the LAB system the coordinates v;, @;:

vy = (v + vj)"? (39
0; = arccos [v},(v}, + v]) **]; (35)
the polar coordinates in the CM system are u;, 9;:

uy = (uj; + uj3)'’? (36)
9, = arccos [u;,(u}, + ul) " *?]. (37)
The polar coordinate transformation corresponding to the transformation of the
LAB and CM systems is determined unequivocally by the relations (27)—(30)
and (34)—(37). We will not write down those explicitly. Let us just note that the
momentum conservation in the CM system has in the polar coordinates the form:
uAmA = uBmB (38)
ucmc = quD ; (39)

the norm of the relative velocity vector is given by the sum:

v, = u, + ug (40)
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v = uc + up . (41)
Using the last relation we can express the product relative translational energy T’ as:
T = (1)2) (mcM[mp) u . (42)

In the arrangement of our experiment the reactant beams intersect at a fixed
angle of 90°. This makes it possible (without any further restrictions) to orient the
laboratory system in such a way that the base vectors v,, v, will be parallel with the
radius vectors v,, vy (Fig. 2). This allows for a simple definition of the product
scattering angle. Let us define the scattering angle of the product C in the LAB
system as the angle between the radius vector v of the product C and the radius vector
v, of the reactant A. The LAB scattering angle defined in this manner is then identi-
cal with the polar angle @ of the product velocity in the LAB system (cf. equation
(35)). Therefore, we can call directly the polar angle, O, the laboratory scattering
angle (LAB angle) of the product C. Similarly, we can define the scattering angle
of the product C in the CM system as the angle between the radius vectors u, and u.
Because the radius vector u, is ex definitione parallel with the base vector v, this
scattering angle is identical with the polar angle 3. of the product velocity in the CM
system (cf. equation (37)). We will call the polar angle, 9, directly the CM scattering
angle (CM angle) of the product C. Let us note that the product CM angle is identical
with the angle between the relative velocity vectors of reactants and products. The
graphical representation of the velocities in the LAB and CM systems in the velocity
space such as in Fig. 2 is referred to as the Newton diagram?.

The Total Cross-Section

Pairs of reactants A + B enter the collision with various values of the impact para-
meter vector b (ref.'*). The continuous set of values of ||b|| = b ranges from zero
to a maximal value, b,,, where the process under study still takes place. Each pair,
of velocity vectors of mutually randomly oriented reactants in crossed beams defines
their relative velocity vector v, and for b + O a plane containing v, and b. In this
way the beam scattering problem develops into a three-dimensional problem; there-
fore, our treatment must be transferred into the E, velocity space. Let us assume
that the values of the reactant relative velocity vectors (defined by various velocity
pairs of reactants in beams) differ not very much from the most probable value
(as far as their size, direction, and position is concerned). Then, in the first approxima-
tion, the vector of so defined most probable reactant relative velocity can be regarded
as a mutual cross line of all considered planes determined by the particular reactant
pairs.

Radius vectors of velocities of products are located in the planes of radius vectors
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of velocities of those particular reactants they were formed from. Thus the product
velocities in the velocity space are distributed isotropically about the most probable
relative velocity vector of the reactants (accordingly to the isotropical distribution
of b). In other words: if the above mentioned assumptions are fulfilled, the distribu-
tion of product velocities about the most probable reactant relative velocity vector
must be cylindrically symmetrical.

Let us assume that the dimensions of the detection slit are infinitesimal so that
we may apply the differential treatment. The distance R of the geometrical center
of the detection slit from the collision center (approximated here as a point) is
an instrumental constant. Its position in the LAB coordinate system can be then
defined by the angle @ and by the azimuthal angle & (angle with respect to the plane
of the two beams). As the particles travel in the field free region between the colli-
sion center and the detection slit with a constant velocity, the position of the detec-
tion slit can be expressed by the angular coordinates of the detected particles in the
LAB system, and vice versa.

The number of ions of the species k (k = A, C) reaching the detector is propor-
tional to the number of k-ions passing through the detection slit area dG, and sur-
mounting a stopping potential* &. As the mass-to-charge ratio of the detected ions
is known, the stopping potential ¢ can be expressed directly in units of kinetic energy.
The detector slit area is an instrumental constant for all positions of its geometrical
center on a spherical surface of a radius R and with its origin in the collision center.
The measured electric current (or the pulse-counted number of particles) is then
directly proportional to the intensity of particles of the species k, i.e. to the number
of particles k passing during a unit time through the unit area perpendicular to it.
As the distance R of the geometrical center of the detection slit is an instrumental
constant, the area dG of the slit can be expressed angularly as an element dQ =
= sin © dO dd of the solid angle Q in the LAB coordinate system of the velocity
space.

Let us consider a continuous function Ik(e, Q) of continuous variables ¢, Q. Here ¢
represents the applied potential barrier in kinetic energy units, defined on the interval
e €(0; Eppyy); Qs a solid angle, defined on the interval Q e (0; 4n) and cutting from
the spherical surface G, = 4nR* an area of variable size. The intensity I,(e, Q)
of the ion reactant A differs from zero only over an area in the infinitesimal vicinity
of the values ©® = 0 and ® = 0 (i.e. the ion reactant enters the scattering center
as a beam and the values ©® = 0 and ® = 0 are adjusted to its direction). Therefore
we can neglect in our consideration the dependence of I, on Q and take only I, =

= I,(¢).

* We treat here the ion energy analysis by means of a stopping potential, i.e. integral energy
analyzer, as it is more general; the case of a differential (e.g., a deflection or a TOF energy analyzer)
is included in the treatment and its specific features will be pointed out further on in the text.
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Assuming a single reaction channel of the process A + B (leading to the products
C + D), we can write'*

Iy = 0) — In(e = 0) = I(e = 0, @ = 4n), (43)

where I,(¢ = 0) is the full initial (unattenuated) intensity of the reactant A (zero
stopping potential barrier); I(¢ = 0) is the full final (attenuated by the particular
single-channel scattering process) intensity of A; and I(e = 0, @ = 4n) is the full
intensity of the product C (no barrier, entire spherical surface). It holds for I)(e = 0):

IA(8 =0) = IA(G = 0) 1299 (—UtolnBS) > (44)

where s is the length of the ion A path through the collision center (in the direction
of movement of A), and ng is the number density of particles of the reactant B;
the proportionality constant o,,, is the total cross-section of the process under study.
Combining (43) and (44) one gets

I(e =0,Q = 4n) = I,(e = 0) [1 — exp (—0,nps)] - (45)

The expression in the brackets can be, for small values of the exponent, approximated
by the first term of the expansion, and then

I(e = 0,Q = 4n) = o, npsls(e =.0) = 0, . (46)

The function I(g, 2), from now on designated as I(g, 2), represents for fixed values
of &, Q a number of ions C which appear in a solid angle Q¢ < Q and whose kinetic
energy Ec is greater than the barrier ¢, i.e. Ec < (E,. — ¢) = E. (The function
I(E, Q) can be obtained from I(g, Q) for a fixed value of Q by the reflection with res-
pect to theline ¢ = E,,,/2). The function I(E, Q) fulfils all the requirements of a func-
tion proportional to a distribution function F(E, Q) of continuous random variables
E, ©.

Differentiating the function I(E, Q) with respect to E, Q we obtain a function
i(E, Q), proportional to the probability density f(E, Q) that Ec < E, Q¢ < Q:

oXI(E, Q)

“F a0 i(E, Q) ; (47)

the expression i(E, Q) dE dQ is then proportional to the probability that the product
LAB kinetic energy falls into the interval (E; E + dE) and that the product appears
in the LAB solid angle interval (Q; Q + dQ).
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Let us consider a function J(E, Q):

JE, Q) = ai%—g—) ; (43)

the expression J(E, 2) dQ is then proportional (for a fixed value of E) to the proba-
bility that the product appears in the interval of the LAB solid angle (2; Q + dQ),
ie. Q < Qc < Q + dQ. This solid angle interval intercepts on the surface of the
sphere of diameter R and its center in the point O an annular surface. The area
of this surface is proportional to [sin ©® d® d®; a h™! multiple of the annulus area
is then proportional to the area dG of the detection slit (h € (0; 2x)). Thus the function
J(E, Q) is obviously directly proportional to the measured quantity at a fixed value
of E. It holds, of course, that

0J(E, Q) .
——— ={(E, Q). 49
) = i(E, ) (49)
Designating
I j i(E, Q)dEdQ = I, = I(e= 0,Q = 4m), (50)
we have:
I(E, Q)I;} = F(E, Q); (51)
it follows from (51)
f(E, Q) = i(E, Q) I;y; = ‘1’(—5;—91;,: . (52)

. This means that by normalization and differentiation of the measured function
J(E, Q) with respect to E we obtain the probability density that the detected product
has kinetic energy Ec < E and falls into a solid angle Q. < Q.

In conclusion let us note the following: if a differential, instead of an integral,
energy analyzer is used, the differentiation with respect to E results from the per-
formance of the analyzer; the measured quantity is in such a case proportional
directly to i(E, Q).
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Transformation of Independent Variables:
Probability Density Distribution of Cartesian and Spherical Coordinates
of Velocities in the LAB and CM System

In order to express the probability density distribution of the coordinates of product
velocities in the coordinate systems in the velocity space, we need first of all to trans-
form the variables of the probability density distribution f(E, Q).

It holds for the transformation of the LAB kinetic energy E to the LAB velocity v
(we will skip indexing of particles remembering that the quantities always refer
to the product C):

f(E, Q)dE dQ = f(v, Q) dvdQ (53)

which is a consequence of the conservation of the number of particles (or conserva-
tion of probability) in the velocity space; equation (53) implies:

f(E, Q) mv = f(v, Q). (54)

For the transformation of the variables v, Q to the complete set of spherical
variables v, ©, @ of the product velocity, we can write another relation reflecting
the probability conservation:

f(v, Q) dvdQ = f(v, ©, $) dv dO dP ; (35)

it follows from (55):
f(v,Q)sinO = f(v,0,9). (56)
The meaning of f(v, ©, ®) dv dO d¢ is the probability that the product LAB velocity

spherical coordinates v, O¢, dc fit within the following interval: v < vc < v +
+dv,® <Oc< O +dO, D < P < P + do.

The remaining transformations are given by the usual Jacobians!!; Therefore,
we will just show the results:

f(v, ©, ®) = v*sin O f(v,, v,, v3), (57)

where vy, v,, v3 is a complete set of Cartesian coordinates of the product velocity
in the LAB system; the meaning of f(vy, v,, v3) dv, dv, dv, is the probability that
vy < 0oy < Vg + dvg, vy < Ve < vy + dvy, U3 < Cc3 < ¢3 + dos.

The transformation of LAB Cartesian coordinates v;, v,, v3 to CM Cartesian
coordinates uy, u,, u; of the product gives

f(vn V3, ”3) = f(“l’ Uz, “3) (58)
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and the transformation of the CM Cartesian coordinates u,, u,, u3 to the CM
spherical coordinates u, 9, ¢ gives

Sf(uy, uy,u3) = (u?sin 9)7* f(u, 9, 9) . (59)

The meaning of f(u,, u,, u3) du; du, dus is the probability that u; < uc; < u; +
+ duy, uy < ue, < uy + duy, Uz < ucy < usz + duz; analogously, the meaning
of f(u, 9, »)dud3de is the probability that u < uc <u + du, $ < 9 < 9 +
+d3, 0 < oc < @ + do.

By combining (57)—(59) and substituting for f(v, @, @) from (54) and (56) we ob-
tain a very important relation:

fE,Q)mov™ " = f(vy, vy, 03) = fuy, uy, u3) =
= (u?sin 9)~! f(u, 9, @) . (60)

Thus by dividing the probability density f(E, Q) by the appropriate value of the
norm v = (2E/m)'/?> we get a quantity proportional to the probability density
fuy, uy, us).

The probability density distribution f(u;, u,, u3) must reflect the cylindrical
symmetry of the scattering pattern with respect to the reactant relative velocity vector.
This makes it possible to represent the distribution of product velocities by a cut
through the velocity space of the system containing the reactant relative velocity
vector. Such a cut is done for instance by the plane of the beams. The plot of the
probability density distribution f(u,, u,, u3) in this plane using the contour method
is referred to as the scattering diagram?3~15,

Let us note that the probability density f(uy, u,, u3) has been called in literature
also Cartesian probability!, Carterian intensity, flux density, and specific intensity>.

Probability Density Distribution of CM Scattering Angle
and of Product Relative Translational Energy

The probability density f($)of CM product scattering angle 9 is given by the integral
f(9) = J f(u, 9, ¢)dude . (61)

Because of the invariance of f(u, 9, ¢) with respect to ¢ (following from the cylindri-
cal symmetry of the product velocity distribution) we can write:

f(9) = 2njf(u, 9, @) du ; (62)
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substituting from (59) we have:

f(9) = 2nsin S&J.u2 f(uy, uy, us)du . (63)
The probability density P(9) defined by the relation
P(9) = Juz fuy, us, us) du (64)

is proportional to the differential cross-section o 4;¢(9); this follows from the definition
O'diff(S) = (211', Sin !9)_1 (do‘wt/ds) . (65)
In order to prove this statement we recall that

i(8) = f(9) L1
where
i(9) = dim/dS = dIm/dS s

because
ot = J.i(S) s =1,..

Then it follows:
P(9) = (2nsin 9)7! f(9) = (2nsin §) 7! [i(9)/I o] =
— (2nsin 9)"! Id—’—s = (2nsin 9) (/1) (dorudd$)

tot
which means that
00 P(9) = (2n sin )7 (do,/d9) = 64ie(9) -
Hence, the proportionality constant between P(9) and o4(9) is the total cross-
-section.
In order to obtain the probability density P(T") of the product relative translational

energy T’, we have to derive first the expression for the probability density P(u)
of the product CM velocity u (i.e. the norm of uc)

P(u) = j f(u, 8, ¢)d9de = 2n .[f(u, 3, 9)d9. (66)
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Substituting from (59) we have:

P(u) = 21tu2ff(u1, u,, u3)sin $d9 . (67)

Now we can get the probability density P(T’) by the transformation of variables,
following from the relation:

P(u)du = P(T")dT' . (68)
The substitution from (42) gives:

P(T)umcMmp' = P(u); (69)

The combination of this relation with (67) leads to the final result
P(T’) = ZﬂmD(mcM)—‘l ujf(ul, U,, u3) sin 3 dg. (70)

The probability density distribution P(9) vs 3 is often called in literature the CM
angular distribution and the probability density distribution P(T")vs T' is called
the product relative translational energy distribution®.

Our paper attempts to use consistently the fact that an elementary chemical process
occurring in a collision of two particles is investigated in scattering experiments
on an ensemble of a large number of reactant pairs. This provides a basis for normali-
zation of the measured product intensities and for their interpretation from the point
of view of the probability theory. Such a treatment makes it possible to speak about
a probability that a (single) product particie exhibits certain properties.
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